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Abstract. Continuous unitary transformations can be used to diagonalize or approximately diagonalize a
given Hamiltonian. In the last four years, this method has been applied to a variety of models of condensed
matter physics and field theory. With a new generator for the continuous unitary transformation proposed
in this paper one can avoid some of the problems of former applications. General properties of the new
generator are derived. It turns out that the new generator is especially useful for Hamiltonians with a
banded structure. Two examples, the Lipkin model, and the spin–boson model are discussed in detail.
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1 Introduction

The diagonalization of a given Hamiltonian is one of
the important goals in any quantum mechanical prob-
lem. Apart from few explicitly solved models it is only
possible approximatively or numerically. Four years ago,
Wegner [1] proposed flow equations for Hamiltonians to
bring a given Hamiltonian closer to diagonalization. Tech-
nically, the approach is based on a continuous sequence
of infinitesimal unitary transformations applied to the
Hamiltonian. The infinitesimal unitary transformations
are chosen so that the off-diagonal matrix elements be-
come smaller. In principle the flow equations proposed by
Wegner finally yield a diagonal matrix, except for the sit-
uation close to resonances, where few off-diagonal matrix
elements may still be large. This will be made more pre-
cise later. Unfortunately it turned out that for a realistic
Hamiltonian in an infinite-dimensional Hilbert space, the
situation may be more difficult. Wegner discussed as an
example interacting electrons in one dimension. The first
problem in such a system is, that during the flow higher
interactions are generated. Wegner solved this problem
by passing to an n-orbital model, where, in the large n-
limit, the flow equations can be closed. The second prob-
lem is, that even then it is not possible to diagonalize
the Hamiltonian completely. Instead he used a block–
diagonalization. With this modified approach he was able
to solve the flow equations.

Later Wegner’s flow equations have been applied to
various models of condensed matter physics. A class of
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models where the flow equations yield very accurate re-
sults are dissipative quantum systems [2,3]. It was also
possible to treat the electron–phonon problem with this
method [4,5], for which one can obtain accurate values
for the transition temperature [6]. The reason why the
approach is so successful is that it provides a consistent
renormalization scheme for Hamiltonians. This has first
been pointed out by G lazek and Wilson [7], who devel-
oped an essentially equivalent method a few months later.
Their method has been used to treat problems from quan-
tum chromo dynamics [8,9].

Flow equations are a useful tool to treat systems with
various energy scales and to renormalize a given Hamil-
tonian, but it is difficult to apply them to a finite matrix
or to a Hamiltonian with a simple structure. Although it
may be possible to choose the transformation in such a
way that some of the higher interactions are not gener-
ated (this has been done in the treatment of dissipative
quantum systems in [2]), one cannot avoid in general that
the Hamiltonian looses its initially simple structure. This
point has been discussed in detail by Richter [10]. He ap-
plied the flow equations to a simple model, the spin–boson
model, and used it to test various truncation schemes. The
aim of the present work is to propose a different set of
flow equations that has the property that a band diagonal
matrix or Hamiltonian keeps its band diagonal structure
during the flow.

In the following section, I introduce the new genera-
tor for the continuous unitary transformation and I show
that it can be used to diagonalize a given Hamiltonian.
The main property of the new generator is that band di-
agonal Hamiltonians remain band diagonal. I derive some
properties of the new flow equations.
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In Sections 3 and 4 I apply the flow equations to
two simple models: the Lipkin model and the spin–boson
model. The Lipkin model has a finite Hilbert space, the
Hamiltonian can be written in the form of two tridiagonal
matrices. The spin–boson model can as well be written as
two tridiagonal matrices, but the Hilbert space is infinite.
The aim of this paper is to show that the new set of flow
equations is useful if one wants to deal with simple finite
or infinite matrices. Therefore I only derive some results
for the spectra of these models, but I do not discuss the
physics of these models in detail. In both cases the reader
may consult the references for the physical background of
the models. For the Lipkin model, all results presented
here are well known and have been obtained by various
other methods. For the spin–boson model I derive a for-
mula for higher eigenvalues that has been derived so far
only within a first order perturbational treatment. The
new result is that this formula has a much wider range of
validity.

Section 5 contains the conclusions together with a crit-
ical discussion of the possible range of applicability of the
new flow equations.

2 Generalities

In this section I deal with a Hamiltonian that is given by
a finite or infinite, real, symmetric matrix

H = (hnm), hnm = hmn. (2.1)

An extension to complex, hermitian or normal matrices is
easily done. In general, flow equations for a Hamiltonian
are constructed by a continuous unitary transformation
written in a differential form,

dH

d`
= [η,H]. (2.2)

η is the generator of the infinitesimal unitary transforma-
tion, it is an anti-hermitian operator that depends on H
and therefore implicitly on the flow parameter `. Wegner
[1] proposed to choose η = [Hd,H], where Hd is the diago-
nal part of the Hamiltonian. With this choice of η one can
show that η → 0 for ` → ∞. The flow equations yield a
final matrix with the property that hnm(hnn−hmm) = 0.
This means that either the off-diagonal matrix elements
hnm vanish or that for a finite hnm the difference of the
corresponding diagonal matrix elements hnn − hmm must
vanish. Thus the Hamiltonian is diagonalized except for
some possible resonances. As already mentioned in the in-
troduction this choice of η has one disadvantage: if the
initial matrix has a simple structure, it looses this struc-
ture for finite `. This becomes clear if one takes a band
diagonal Hamiltonian, i.e.

hnm(` = 0) = 0 if |n−m| > M. (2.3)

Taking

η = (ηnm), (2.4)

one obtains flow equations for the matrix elements

dhnm

d`
=
∑
k

(ηnkhkm − hnkηkm) (2.5)

which in general do not conserve (2.3). Therefore I propose
the new generator

ηnm = −ηmn = sign(n−m)hnm, ηnn = 0. (2.6)

With this choice the flow equations for the off-diagonal
matrix elements are

dhnm

d`
= −sign(n−m)(hnn − hmm)hnm

+
∑
k 6=n,m

(sign(n− k) + sign(m− k))hnkhkm.

(2.7)

Due to the sum of the two sign–functions the second term
vanishes if |n−m| > M . This shows that the new genera-
tor preserves the band diagonal structure. For the diagonal
matrix elements one obtains

dhnn

d`
= 2

∑
k 6=n

sign(n− k)hnkhkn. (2.8)

The main question is now whether the new choice of η
can be used to diagonalize the Hamiltonian. This is indeed
the case for finite matrices (1 ≤ n ≤ N) or semi–infinite
matrices (1 ≤ n). For the sum of the first r diagonal matrix
elements one obtains the differential equation

d

d`

r∑
n=1

hnn = −2
r∑

n=1

∑
k>r

hnkhkn < 0. (2.9)

This quantity decays as a function of `. I assume that H
is bounded from below. Then

∑r
n=1 hnn is bounded from

below by the sum of lowest r eigenvalues of H. Therefore
its derivative must vanish in the limit `→∞, i.e.

lim
`→∞

hnkhkn = 0. (2.10)

Furthermore, if hnm tends to zero, one must have sign(n−
m)(hnn−hmm) < 0 for sufficiently large values of `. Thus
the diagonal matrix elements are ordered for large `.

Some properties of the flow equations with the new
choice (2.6) of the generator are:

• The final matrix is diagonal, even if it contains degen-
eracies.
• The matrix remains banded, hnm = 0 if |n−m| > M .
• hnn(∞) ≥ hmm(∞) for n > m and for irreducible ma-

trices. If the matrix is reducible, each of the irreducible
blocks can be treated separately.
• The asymptotic behaviour of hnm for large ` is known:
hnm ∝ exp(− |hnn(∞)− hmm(∞)| `).

The last property follows directly from the flow equa-
tions. For large values of `, the diagonal matrix elements
are in the correct order and no level crossings occur for
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larger values of `. The second term in (2.7) falls of faster
than ∝ exp(− |hnn(∞)− hmm(∞)| `) so that the asymp-
totic behaviour is determined by the first term. For Weg-
ner’s choice of η, one cannot exclude non-vanishing off–
diagonal matrix elements due to degeneracies of diagonal
matrix elements, and the asymptotic behaviour of the ma-
trix elements for large ` is less clear.

Let me now discuss the application of the new flow
equations to two examples.

3 Example 1: Lipkin model

The Lipkin model [11] is a toy model of nuclear physics
that describes in its simplest version two shells for the
nucleons and an interaction between nucleons in different
shells. It serves as a standard example for testing of various
approximations. Recently Pirner and Friman [12] applied
flow equations to this model. As usual new interactions
are generated and they used a suitable truncation to close
the flow equations. They showed that for a large number
of particles N the truncated flow equations yield the exact
result whereas for small N deviations occur. Furthermore
the flow equations are only applicable for small couplings.
For larger couplings the model shows a transition from a
state with the same symmetry properties as the Hartree–
Fock state to a state with different properties [13]. I will
come back to this point later.

A suitable representation for the Lipkin model is in
terms of pseudo-spin operators [12].

H(` = 0) = ξ0Jz + V0(J2
+ + J2

−). (3.1)

H commutes with Ĵ2 = J2
z + 1

2 (J+J− + J−J+) and Ĵ2

has the eigenvalues J(J + 1) as usual. The pseudo-spin
operators form the usual angular momentum algebra

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (3.2)

It can easily be shown that in the basis where Ĵ2 and Jz
are diagonal the Hamiltonian decays into two tridiagonal
matrices.

H = (hnm)n,m=0...J or J−1 or J−1/2. (3.3)

The dimension of the matrices depends on J . If 2J is even,
one of the two matrices has dimension J , the other J + 1,
if 2J is odd, both matrices have the dimension J + 1/2.
The matrix elements are

hnn = εn, hnn+1 = δn, hnm = 0 if |n−m| > 1
(3.4)

with

εn(0) = ξ0(−J + 2n) (3.5)

δn(0) = V0

√
J(J + 1)− (J − 2n)(J − 2n− 1)

×
√
J(J + 1)− (J − 2n− 1)(J − 2n− 2) (3.6)

or

εn(0) = ξ0(−J + 2n+ 1) (3.7)

δn(0) = V0

√
J(J + 1)− (J − 2n− 1)(J − 2n− 2)

×
√
J(J + 1)− (J − 2n− 2)(J − 2n− 3). (3.8)

The flow equations are in both cases

dεn

d`
= −2δ2

n + 2δ2
n−1 (3.9)

dδn

d`
= −δn(εn+1 − εn). (3.10)

A first possibility is to solve these equations iteratively.

One can start with the ansatz ε
(0)
n (`) = εn(0) and δ

(0)
n (`) =

δn(0) exp(−2ξ0`). Inserting these expressions on the right
hand side of the flow equations yields a first iterative solu-
tion, which can again be used to obtain the next iterative
solution and so on. When one uses this procedure it may
be useful to write the flow equation for δn in the form
d ln δn
d`

= −εn+1 + εn. This procedure reproduces simply
perturbation theory, which works well for small V0 and
not too large J (i.e. not too large particle numbers).

A simple non-perturbative solution can be obtained
in the limit of large J ; this corresponds to the limit of
a large particle number. The two different cases for the
initial conditions above yield

δn(0)2 − δn−1(0)2 = 32V 2
0 J

2
(
n+

1

4

)(
1 +O(1/J)

)
,

(3.11)

or

δn(0)2 − δn−1(0)2 = 32V 2
0 J

2
(
n+

3

4

)(
1 +O(1/J)

)
.

(3.12)

With the ansatz

εn(`) = a(`)n+ b(`) (3.13)

the flow equations can be written as

δn(`) = f(`)δn(0) (3.14)

where

df

d`
= −af, (3.15)

and

da

d`
= −64V 2

0 J
2f2. (3.16)

For the last two equations the quantity

a2 − 64V 2
0 J

2f2 (3.17)
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is conserved. Since f → 0 for `→∞, this yields directly

a(∞) =
√

4ξ2
0 − 64V 2

0 J
2 (3.18)

This solution exists for 4JV0 < ξ0. Taking the first case
from above one has

db1

d`
=

1

4

da

d`
(3.19)

with the solution

b1(∞) = −
(
J +

1

2

)
ξ0 +

1

4

√
4ξ2

0 − 64V 2
0 J

2. (3.20)

For the second case one obtains

db2

d`
=

3

4

da

d`
(3.21)

and

b2(∞) = −
(
J +

1

2

)
ξ0 +

3

4

√
4ξ2

0 − 64V 2
0 J

2. (3.22)

This yields directly the approximate spectrum

εn1,2 =
√

4ξ2
0 − 64V 2

0 J
2
(
n+

1

2
±

1

4

)
−
(
J +

1

2

)
ξ0

(3.23)

and the gap between the ground state and the first excited
state

ε02 − ε01 =
√
ξ2
0 − 16V 2

0 J
2. (3.24)

This result has been obtained by Pirner and Friman [12]
as well. It is also well-known from RPA. Nevertheless the
above formulation of the flow equations has certain ad-
vantages.

1. It is quite easy to obtain perturbation theory using the
flow equations. With the conventional formulation of
the flow equations this in principle possible, but one
has to introduce many higher interactions if one wants
to obtain higher orders in perturbation theory. In the
present formulation the flow equations (3.9, 3.10) are
closed and the iterative solution is easily constructed.

2. The formulation of the flow equations is not restricted
to 4JV0 < ξ0. Although the perturbative solution and
the approximate solution for large J shown here are
limited to this regime, the flow equations (3.9, 3.10)
can be solved (at least numerically) for 4JV0 > ξ0 as
well.

3. The flow equations in the present form may be used
to derive a systematic 1/J–expansion. To do this one
has to use a polynomial ansatz for εn as a function of
n instead of the linear ansatz above, and one has to
take higher orders in δ2

n − δ
2
n−1 into account.

Since the aim of the present paper is only to show
that the new proposal for the continuous unitary trans-
formation is useful if one wants to treat band–diagonal
Hamiltonians, I do not follow the lines suggested in these
points.

4 Example 2: spin–boson model

As a second example I discuss the spin–boson model de-
scribed by the Hamiltonian

H(` = 0) = −
∆

2
σx +

λ

2
σz(b+ b†) + ωb†b . (4.1)

It has a wide range of possible applications, especially in
atomic physics where the spin describes a two level atom
that is coupled to a e.g. laser field. Due to its long history
there exists an enormous amount of work that has already
been published on this model, so that it is impossible to
review or cite all these papers. A good overview may be
found in the paper by Graham et al. [14]. More recently
this model has been discussed in connection with quan-
tum chaos [15,16]. Together with the usual flow equations
the model has been used to test several approximation
schemes [10]. It turned out that the ground state and the
low lying excited states as well as dynamical properties
can be calculated very accurately using traditional flow
equations. If one is interested in quantum chaos, an accu-
rate knowledge of high eigenvalues is necessary.

The Hamiltonian (4.1) can be written as two tridiago-
nal infinite matrices. The flow equations are therefore the
same as for the Lipkin model,

dεn

d`
= −2δ2

n + 2δ2
n−1, (4.2)

and

dδn

d`
= −δn(εn+1 − εn), (4.3)

but with different initial conditions:

δn(0) =
λ

2

√
n+ 1, (4.4)

εn(0) = nω ± (−1)n
∆

2
· (4.5)

It is very easy to solve these equations for ∆ = 0. One
obtains

εn = nω + ε0, ε0 = −
λ2

4ω

(
1− exp(−2ω`)

)
,

δn =
λ

2

√
n+ 1 exp(−ω`). (4.6)

In principle it is possible to use this solution to obtain an
expansion for small ∆. A perturbative treatment for small
∆ has been given to first order by Graham et al. [14], and
the flow equations yield the same result. Therefore I will
not reproduce this solution here. A second possibility is
an iterative solution for small λ. It yields a perturbative
solution valid for small n. Similarly ordinary perturbation
theory is valid only if n is small (n� (ω±∆)2/λ2). Instead
I try to obtain an asymptotic expression for εn that is vaild
for large n. To do this, I make the following ansatz

εn = nω −
λ2

4ω
(1− exp(−2ω`))± (−1)n

∆

2
fn(`), (4.7)
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and

δ2
n =

λ2

4
(n+ 1) exp(−2ω`)± (−1)n

∆

2
gn(`). (4.8)

This ansatz yields flow equations for fn and gn

dfn

d`
= −2(gn + gn−1) (4.9)

dgn

d`
=
λ2

2
(n+ 1) exp(−2ω`)(fn+1 + fn)

− 2ωgn ∓∆(−1)ngn(fn+1 + fn). (4.10)

It is now useful to introduce the new variable

x = 1− exp(−2ω`) (4.11)

instead of the flow parameter `. In the following I take fn
and gn as functions of x. The flow equations are rewritten
as

ω(1− x)
dfn

dx
= −gn − gn−1, (4.12)

2ω(1− x)
dgn

dx
=
λ2

2
(n+ 1)(1− x)(fn+1 + fn)

− 2ωgn ∓∆(−1)ngn(fn+1 + fn), (4.13)

with the initial conditions

fn(0) = 1, gn(0) = 0. (4.14)

These equations are still exact. For large n one has
g2n+2 ≈ g2n and g2n+1 ≈ g2n−1. As a consequence one
obtains f2n+1 ≈ f2n. This yields

ω(1− x)
df2n

dx
≈ ω(1− x)

df2n+1

dx
= −g2n − g2n+1,

(4.15)

2ω(1− x)
dg2n

dx
≈ 2λ2n(1− x)f2n

− 2ωg2n ∓ 2∆g2nf2n, (4.16)

2ω(1− x)
dg2n+1

dx
≈ 2λ2n(1− x)f2n

− 2ωg2n+1 ± 2∆g2n+1f2n. (4.17)

Taking the derivative of the first equation, and using the
sum of the second and the third to express the derivative
of g2n+g2n+1 by f2n I obtain for large n (i.e. 2n+1 ≈ 2n)

(1− x)
d2fn

dx2
= −2

λ2

ω2
nfn. (4.18)

The general solution of this differential equation can be
expressed using Bessel functions

fn(x) =
√

1− x

[
aJ1

(
2λ

ω

√
n(1− x)

)
+ bY1

(
2λ

ω

√
n(1− x)

)]
· (4.19)

Using the initial conditions fn(0) = 1 and f ′n(0) = 0, one
obtains

a = π
λ

ω

√
nY0

(
2λ

ω

√
n

)
,

b = −π
λ

ω

√
nJ0

(
2λ

ω

√
n

)
· (4.20)

This yields the complete solution for εn(`). I am interested
in the limit ` → ∞, which corresponds to x = 1. Using
the behaviour of the Bessel function for small arguments
one obtains

fn(1) = −J0

(
2λ

ω

√
n

)
· (4.21)

This yields the final expression for the eigenvalues for
large n

εn(` =∞) = nω −
λ2

4ω
∓ (−1)n

∆

2
J0

(
2λ

ω

√
n

)
· (4.22)

Using the asymptotic behaviour of the Bessel function,
one obtains

εn(` =∞) = nω −
λ2

4ω

∓ (−1)n
∆

2n1/4

√
ω

πλ
cos

(
2λ

ω

√
n−

1

4
π

)
·

(4.23)

Except for a misprint (the factor n−1/4 is missing in the
last term) this expression coincides with the result in [14].
Graham et al. performed a first order perturbational treat-
ment in ∆ and expanded the result to obtain (4.23) for
large n. Thus, in their approach, the validity of (4.23) is
unclear.

How accurate are (4.22, 4.23)? A first condition is ob-
tained from a consistency check of the above assumption
fn+1(x) ≈ fn(x). This assumption must be true for all x
and all λ/ω. Due to 2

√
n+ 1λ/ω ≈ 2

√
nλ/ω + λ/(ω

√
n)

one must have

λ

ω
√
n
� 1. (4.24)

But this is not the only condition one needs. A simi-
lar consistency check has to be done for gn. It is more
complicate since it depends on ∆. Fortunately there is a
more simple possibility to determine the range of appli-
cability for (4.22, 4.23), which is equivalent to the consis-
tency check proposed above. From the general considera-
tions in Section 2 one knows that the flow equations yield
εn(` = ∞) ≤ εn+1(` = ∞). This means that one must
have

ω >
∆

2

∣∣∣∣J0

(
2λ

ω

√
n

)
− J0

(
2λ

ω

√
n+ 1

)∣∣∣∣ . (4.25)

For large λ
ω

√
n this yields the condition

∆

2ω

√
λ

πω

1

n3/4
< 1. (4.26)
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Fig. 1. The relative error of the asymptotic expression for the
eigenvalue compared to the exact result as a function of ∆/ω
for λ/ω = 4.0. The short dashed line is n = 10, the long dashed
line n = 15 and the solid line n = 20.

Equations (4.24, 4.26) show that within a wide range of
parameters (4.22, 4.23) are applicable. But one should be
careful using (4.23) for small λ. Equation (4.23) has a rel-
ative error O( ω

2λ
√
n

) compared to (4.22) so that for small

λ (4.22) yields better results. For λ = 0, (4.22) yields the
exact solution (which is of course trivial), whereas (4.23) is
not defined. Only in the limit λ→ 0 and ∆λ/ω2 = const.
it is not possible to apply (4.22). But this regime can be
treated with perturbation theory for small λ.

The accuracy of (4.22) is very high, even for small n
and large ∆. It can be tested numerically if one compares
(4.22) with the exact numerical solution of the flow equa-
tions. This is done in Figure 1. We show the relative error
of the asymptotic formula (4.22) plotted as a function of
∆/ω. The coupling is λ/ω = 4.0. For small n the error is
relatively large (up to 2% for n = 10), whereas it is smaller
for larger n. The parameters are chosen so that for n = 10
the left hand side of (4.24) equals 1.3 and is therefore too
large. The left hand side of (4.26) equals 0.5 for the worst
case shown, i.e. n = 10 and ∆ = 5ω. A relative error less
than 0.1% is obtained if the left hand side of (4.26) is less
than 0.1 and for n ' λ2/ω2.

The main result of this section is clearly the expression
for εn(` =∞) given above. But one does not only know the
eigenvalues of the Hamiltonian, the complete flow (4.19) is
known as well. This allows to reconstruct the continuous
unitary transformation that diagonalizes the Hamiltonian.
Therefore it is even possible to calculate other observables
in the transformed basis. In principle it is possible to com-
bine this result with the results of Richter [10], which are
very accurate for small n. Then one should be able to ob-
tain accurate values for dynamical correlation functions of
the model. But the goal of the present calculations was to
show that the new flow equations proposed in this paper

are indeed useful if one wants to deal with band-diagonal
matrices or Hamiltonians. Therefore I do not follow this
line.

5 Conclusions

The flow equations proposed in this paper seem to be use-
ful if one wants to solve a given model. The two examples
showed that solutions can be obtained at least approxi-
matively or in some limits. Some of the advantages of the
new flow equations have already been pointed out. 1) The
matrix is finally in a diagonal form, even if degeneracies
occur. 2) If the Hamiltonian has initially a banded struc-
ture, this form is preserved. 3) The asymptotic behaviour
of the equations is known. Another advantage is that with
the new flow equations one can obtain accurate results for
higher eigenvalues as well. But there are also some disad-
vantages, which may be important in other systems

1. Although asymptotically off–diagonal matrix elements
decay faster if the difference of the corresponding diag-
onal matrix elements is larger, the new generator does
not separate different energy scales automatically. For
small ` it is not guaranteed that off–diagonal matrix el-
ements corresponding to large energy differences decay
fast. Therefore the new flow equations do not provide
a renormalization scheme.

2. An important property of a Hamiltonian one wants to
solve using the new flow equations is that it must have
a pure point spectrum. Hamiltonians with continuous
spectra cannot be treated that way. It is for instance
not possible to apply the new generator to a dissipative
quantum system.

3. If the diagonal matrix elements of the initial Hamil-
tonian are not in the correct order (i.e. hnn ≤ hmm
if n < m) the flow equations will reorder the diagonal
matrix elements. This may cause a problem, because in
such a case the analytical treatment of the flow equa-
tions becomes more difficult.

The first two points mentioned above show that the
new generator cannot be applied successfully to the kind
of problems that have been treated so far using flow equa-
tions. In all these problems one has several different energy
scales and continuous spectra, and one needs a renormal-
ization scheme to obtain useful results. In this sense the
new generator provides a complementary set of flow equa-
tions. It can be applied to problems that cannot be treated
with the original flow equations, but problems that can be
treated with the original flow equations are not within the
range of possible applications of the new scheme.

What kind of problems can be treated with the new
flow equations? It became already clear that Hamiltoni-
ans with a banded structure are good candidates. But even
for Hamiltonians without such a structure the present ap-
proach may be useful. If one has for instance a problem for
which all diagonal matrix elements are of the same order of
magnitude, the usual flow equations are difficult to apply.
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The reason is that differences of diagonal matrix elements
are small and that therefore the flow is very slow. This
does not happen with the new flow equations, since the
flow of the diagonal matrix elements is only determined by
the magnitude of the off-diagonal matrix elements. A class
of possible candidates are therefore disordered systems.

In general one can say that the new flow equations
can be applied to single or few particle systems. It may
therefore be useful in nuclear or atomic physics.

I wish to thank F. Wegner, H.J. Pirner, J. Richter, H. Kunz,
and M.B. Cibils for useful discussions.
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